skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Talukder, Bashir Mohammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electronic counterfeiting is a longstanding problem with adverse long-term effects for many sectors, remaining on the rise. This article presents a novel low-cost technique to embed watermarking in devices with resistive-RAM (ReRAM) by manipulating its analog physical characteristics through switching (set/reset) operation to prevent counterfeiting. We develop a system-level framework to control memory cells' physical properties for imprinting irreversible watermarks into commercial ReRAMs that will be retrieved by sensing the changes in cells' physical properties. Experimental results show that our proposed ReRAM watermarking is robust against temperature variation and acceptably fast with ~0.6bit/min of imprinting and ~15.625bits/s of retrieval rates. 
    more » « less
  2. Approximate computing (AC) leverages the inherent error resilience and is used in many big-data applications from various domains such as multimedia, computer vision, signal processing, and machine learning to improve systems performance and power consumption. Like many other approximate circuits and algorithms, the memory subsystem can also be used to enhance performance and save power significantly. This paper proposes an efficient and effective systematic methodology to construct an approximate non-volatile magneto-resistive RAM (MRAM) framework using consumer-off-the-shelf (COTS) MRAM chips. In the proposed scheme, an extensive experimental characterization of memory errors is performed by manipulating the write latency of MRAM chips which exploits the inherent (intrinsic/extrinsic process variation) stochastic switching behavior of magnetic tunnel junctions (MTJs). The experimental results, involving error-resilient image compression and machine learning applications, reveal that the proposed AC framework provides a significant performance improvement and demonstrates a reduction in MRAM write energy of ~47.5% on average with negligible or no loss in output quality. 
    more » « less
  3. The cells in dynamic random access memory (DRAM) degrade over time as a result of aging, leading to poor performance and potential security vulnerabilities. With a globalized horizontal supply chain, aged counterfeit DRAMs could end up on the market, posing a significant threat if employed in critical infrastructure. In this work, we look at the retention behavior of commercial DRAM chips from real-time silicon measurements and investigate how the reliability of DRAM cells degrade with accelerated aging. We analyze the retention-based errors at three different aging points to observe the design-induced variations, analyze the pattern dependency, and explore the impacts of accelerated aging for multiple DRAM vendors. We also investigate the DRAM chips’ statistical distribution to attribute the vital wear-out effects present in DRAM. We see a continuous increase in retention error as DRAM chips age and therefore infer that the aged retention signatures can be used to differentiate recycled DRAM chips in the supply chain. We also discuss the roles of device signature in DRAM aging and aging-related security implication on DRAM row-hammer error. 
    more » « less